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Abstract:  
The term "auditory scene analysis" (ASA) refers to the act of breaking down a wide range of acoustic 

information into discrete auditory perceptual items, such as melodies or underlying physical sources. ASA-

related perceptual events are now the subject of a slew of new computational models, several of which have just 

appeared in peer-reviewed journals. As a result of this review, we hope to connect the theoretical principles of 

these computational models with the core issues of the framework of theoretical analysis that we have 

developed. Specific questions include how they achieve grouping and separation of sound elements, as well as 

whether they apply any type of competition amongst alternate interpretations of the sound input. These theories 

are examined in terms of the extent to which they incorporate prediction processes, as significant current 

theories argue that perception is essentially prescriptive. There is a lack of a comprehensive understanding of 

how the complex acoustic signal is interpreted by existing computational models of ASA, which focus on 

analyzing the utility of individual procedures (or algorithms) for determining the causes. As a result, a more 

comprehensive explanation of ASA might incorporate the models' complementing elements. 
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I. Introduction 
Every day we listen sound from various sources like speeches from crowd, various vehicle noise, wind 

noise, voice of friend sitting on bike, crowd and many more. This mixer of sound reaching to our ears from 

various sources. Now it is ability of human and non-human leaving animals to extract a sound of a particular 

speaker from mixer of various sounds. Researchers are trying to define a process of this human auditory system 

since several decades and trying to apply it in machine learning. Although humans, and nonhuman animals, 

perform sense analysis with apparent ease, how machines can extract a sound of a interest while rejecting sound 

from other sources effortlessly. In 1953 E.C.Cherry[9] noted this problem as cocktail party problem. In his 

published paper on “Some experiments on the recognition of speech, with one and with two ears” he presented 

various experiments carried out, based on listening by on ear and by two ears. The attempt maid by paper is to 

understand the process of human auditory system of extracting sound of interest while rejecting the other 

sounds. The first set of experiment carried out, relates to this general problem of speech recognition. How do we 

recover what one person is saying when others are speaking at the same time. And if it is required to incorporate 

such a system in machine on what logical basis one can design a machine? One of the logic may be a) Voices 

from different directions b) lip reading gestures c) different speaking voices, mean pitches, mean speeds, male 

and female etc. d) Accent differing e) Transition probability. Among all five, last logic of transition probability 

cannot be excluded. Because human brain may have large set of transition probabilities on which it may enables 

to predict a particular sound and source of sound with maximum like hood estimation. Some people object on 

storage of probabilities in brain. Then the question remains the same on what logic we can use to design a 

machine which will analogous to human being. The test carried out by E.C.Cherry purport to show that human 

is having such power based on the probabilities ranking of words, phonemic, syntactical ending and other 

factors of speech and sound. To find out mechanism of human auditory system the experiment is presented with 

two mixed speeches recorded on a tape, and is asked to repeat one of the speaker voice word by word and 

phrase by phrase. One can play a tape as many times as he wish without writing it down. An Experimental result 

showed that less errors occurs in repetition of same tape and hearing the same sound number of times. 

Improvement in playing words and phrases seen after repeating the tape for more number of time. Now the same 

experiment is carried out with writing it down and now errors are seen minimum. Also except some grammatic 



Survey Of Algorithms Used In Computational Auditory Scene Analysis For Speaker Identification 

DOI: 10.9790/2834-1805010724                                www.iosrjournals.org                                              8 | Page 

mistakes the long phrase have identified correctly. Another set of experiment carried out is related with unmixed 

speeches. At this time two different messages were recorded by same speaker. Now this is played one in the left 

ear and other in the right ear for observation purpose how human auditory system interact with this. It has been 

obseved that Speaker have not found any difficulty in listening and understanding any one of the message from 

any one of the ear as it is a natural behaviour of human to reject unwanted speech similar to, if any one tries to 

listen conversation of speakers in crowd, sudden action takes place to turn on one ear towards conversation. And 

among the conversation also on the interested person or conversation. Now for speaker if it is asked about what 

he listened other than conversation then most of time reply is crowd noise. Human auditory system listens 

everything but extract and concentrate on sound of interest [9]. In another experiment two different messages 

were started in both ears in English spoken by one speaker. When listener was concentrating on right ear, 

suddenly if the language in left ear is changed to German for some time span but spoken by the same speaker 

then it is found that listener will reject that he had listened German voice also. Because he did not know rejected 

message. Shannon has already reported that prediction is readily possible in case of printed language [9]. It is 

possible to decode a written message of a particular person from mixer of written message by observing 

combined message. It is possible to decode the message based on successive identification words, writing style 

of letters etc., and then grouping the words to form a whole sentence. But it is quite difficult to segregate speech 

or sound of particular source from a mixer by machine, even though our ears can do this effortlessly. Sins then it 

become a matter of interest to so many researchers to define an underlying process of human listening capability 

of sound separation and segregation from same source of sound. Following are some methods and algorithms 

made in the field of Computational Auditory Sense Analysis (CASA) in various applications. 

 

II. ASA (AUDITORY SCENSE ANALYSIS) 
While attempting to portray the working human auditory system in such a kind of ambiance in the 

1950s, Colin Cherry created the term "cocktail party dilemma" (E. C. Cherry 1957) [18]. He conducted a series 

of tests to determine what elements aid humans have in performing this difficult activity (Brungart P. S et al. 

2006) [17]. Since then, a variety of explanations have been advanced to give details of the findings of those tests 

(W. Speith et al. 1954, E. C. Cherry 1957,D. Brungart el al.2006,) [51] [18][17]. Helmholtz, in 1863[32], had 

thought on the difficulty of this signal using the model of a ballroom setting in the mid-nineteenth century. Our 

ears can "identify all the individual constituent parts of this confusing totality," he said, even though the signal is 

"complex beyond conception." our auditory system deals with the cocktail party phenomenon. In his 

groundbreaking 1990 book Auditory Scene Analysis [24], Bregman attempted to provide a systematic analysis. 

By establishing comparisons with eyesight, he names the process "scene analysis." For somebody the perception 

is used to create mental model of environment. By combining the information gleaned from our senses, our 

brain constructs mental images of what it has observed. Auditory sense creates the mental representation of an 

acoustic environment by segregating sound components together, like focusing on the target speaker by 

suppressing the rest of the sound and cocktail party. According to Bregman, the auditory system carries out this 

job in two stages. To begin, for each source, separate local time-frequency components are separated. The 

second stage creates the grouping of those separated elements from each source. This stage is also referred to as 

segmentation because it creates time-frequency zones (segments) that are locally grouped (D. L. Wang et al. 

2006) [58]. The segments from the same source are then grouped together in the second stage to generate an 

aural stream. A single source is represented as a stream 

Bregman solved the problem of the cocktail party by suggesting a realistic solution. He claims that a 

Listener going through an auditory sense process follows two steps. The first one is an acoustic mixer reaching 

to ears is broken into pieces. In computer auditory sense analysis, this process is defined as a major and 

unavoidable part. After this stage, grouping from the same source of sound takes place, which, in other words, 

forms a stream of signals from each source. In a real sense, the human auditory system constitutes three-part. 

First, one is perception, second is reasoning, and last is action. 

The author Springer edition (Guy J. Brown et al. 2005)[14] has discussed about human auditory system 

in their essay “Challenges for Computational Intelligence” It has been depicted as in following fig 

 

 

 

 

 

Figure 1.1: Process in Human Auditory system 

 

The senses are the only things that can help us make sense of the world around us. This includes the 

sense of taste and smell. The senses also include things like hearing and seeing. ASA uses the sense of hearing 

(Auditory Sense Analysis). It's important to be able to make rational decisions by having a clear picture of what 

Perception Action Reasoning 
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you're seeing. When it comes to taking action based on their opinion, a person's ability to reason is critical. 

Reasoning is a process that the human brain is capable of successfully accomplishing. Thus for human beings, 

perception is about what is seen or heat. These are the building blocks of "classical AI." They include things like 

memory, planning, and understanding language. Reasoning also connects perception and action, and these three 

parts of intelligence combine to generate intelligence as a whole. Regardless of decade years of development in 

domains like computer vision and audio signal processing, computational scene analysis remains a difficult 

subject despite the seeming simplicity with which humans and nonhuman animals perform it. Three levels of 

descriptions are required to comprehend perceptual information processing by machines. The computational 

theory is the initial level of description, and it is primarily concerned with the objective of computing. The 

hardware development process will come at last to see the physical realization of the developed process. 

The goal of computer scene analysis is to use the user's senses to provide a computerized description of 

the elements and their locations in a real-world scenario. In many ways, the goal of computer scene analysis and 

human scenario analysis is the same, but they are not the same thing. Computer scene analysis could help with 

things like perception and neurobiology [14]. This framework, Computational Auditory Sense Analysis 

(CASA), has been used by many researchers as a front-end for a number of different applications. The following 

literature is about what various authors talk about this process of auditory sense analysis. 

 

Computational Auditory Scene Analysis 

The research of Wang and Brown (2006) [58] carried out experimentation by taking one or two 

recordings of the acoustic world to get a computer to do what a person would do in ASA. There are two 

microphones in this area because it is important to biology and to CASA, which is why this specification says 

that there should be no more than two (as in humans). CASA systems employ perceptually motivated methods. 

Harmony, for example, is used as a grouping cue in most systems [58]. However, this never implies that the 

obtained systems be entirely reliant on (Auditory sense analysis) ASA to attain respective objectives. As it has 

been seen, current systems combine perceptual cues with procedures that aren't always motivated by biological 

considerations. The goal of ASA is that sound sources be linked to perceptual streams in the auditory 

information that reaches our ears. 

The authors G. Hu et al.2004, G. Hu et al.2001, D. L. Wang et al. 2008 [33][34][57] explained the 

ultimate goal of CASA. The development of the Ideal Binary Mask for this type of data, according to Wang and 

others, is one of the primary goals of CASA. The masking phenomena within auditory awareness, stronger 

(dominant) sound always covers a probably weaker sound and renders an impossible to hear within a critical 

band (B. C. J. Moore et al.2003)[41]. This became a major inspiration for the concept. In a similar vein, the IBM 

determines which portions of a mixture's time-frequency representation are target dominant and which are not. 

The IBM is a binary matrix mask target dominant time-frequency unit is indicated by 1 and interference 

appearing or dominant time-frequency unit represented as 0. By considering a spectrogram-like representation 

of an acoustic input reproduced from Wang et al. 

 

 
Figure 2.1:  Group cues for speech organization 

 

A broadband spectrogram of the phrase "absolute delight" is shown in the upper part of the picture. At 

the beginning and end, it shows that there is a sense of time and synchronization with amplitude modulation and 

harmonicas, as well. This is the narrow-band spectrogram of the same phrase. It has been shown in the bottom 

right corner. In a binary matrix, target dominant T-F units have a single entry, and interference dominant T-F 

units have no entries. IBM receives this matrix and processes it. 
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The IBM is mathematically defined as: 

𝐼𝐵𝑀(𝑡, 𝑓) =           1          𝑖𝑓𝑆𝑁𝑅(𝑡, 𝑓) ≥ 𝐿𝐶   ---------------- (2.1) 

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

SNR is the signal-to-noise ratio utilizing the time(t) and frequency(f) indexes(t,f). A unit's signal-to-

noise ratio (SNR) must be greater than or equal to the target's. For CASA based model and for ASR required 

threshold of energy is typically set at 0dB. Pre-mixed target and interference signals are required for the IBM 

(thus the word "ideal"). These people believe a CASA system can estimate IBM from a mixed-signal. Oracle, a 

binary mask, is a good metaphor for IBM. To depict the loud speech ceiling recognition performance in missing 

data ASR experiments, Oracle masks are typically utilized. 

Researchers (Y. Li and colleagues, 2009) [39] in his perspective, the following are some of the reasons 

to explain that IBM is a suitable CASA goal: (i) Li and Wang stated that efficiency of Ideal Binary mask (IBM) 

can be determined by estimating Signal-to-Noise ration of noisy sample of speech after processing through a 

processed binary mask. According to the researchers, the IBM with an LC of 0 dB is occasionally the optimal 

binary mask in certain situations. The ideal ratio (soft) mask and the ideal ratio (hard) mask are two more T-F 

masks that can be compared to the IBM in terms of performance. According to the measurements, IBM and 

optimum ratio mask SNR increases are comparable in the majority of interesting mixes. (ii) Both normal and 

deaf and hard-of-hearing listeners benefit from IBM-segregated noisy speech [20, 17, 38, and 59]. It is possible 

to increase the intelligibility of noisy speech even if the IBM has tampered with it (N. Li et al.2008) [38]. The 

LC of –6 dB appears to be more successful in improving speech intelligibility than the LC of 6 dB. (D. L. Wang, 

U. Kjems et al, 2009)[59]. (iii) T-F representation for very high resolution, each speaker's parts in a mixture are 

separate from each other (S. T. Roweis and colleagues 2000) [61]. In these kinds of situations, IBM can almost 

break a combination down into its parts. A side note: Broadband interferences like noise and echo don't change 

no matter how many people there are. (iv) Related binary masks have been demonstrated to function well in 

ASR. Along with missing-data ASR, tools for discovering missing data and other methods for utilizing IBM to 

improve ASR outcomes have been developed. (v) By Wang et al., IBM noise processing can produce a speech, 

according to the researchers. During this experiment, it is used to alter the noise's speech-like characteristics 

(SSN). The spectrum of speech-shaped noise is very similar to that of genuine speech. They found IBM 

modulated noise to be nearly understandable at low frequencies (e.g., 16 bands). 

 

IBM Estimation Based on Local SNR Estimates 

Below given literature talks about calculating SNR in every time-frequency unit, with few examples. 

These solutions frequently make use of a short-term noise power spectrum estimate. The SNR and, as a result, a 

T-F mask can be calculated using the predicted noise power. The IBM may be easily determined using the 

genuine local SNR information, as shown in Equation (2.1). 

El-Maliki and Drygajlo (1999) [28] propose the negative energy criterion, which can be used to create 

masks based on noise estimates. We'll go over some noise-estimation approaches first and then talk about how 

they can be used to calculate the IBM. When it comes to voice improvement, noise (and SNR) estimation is a 

common issue, particularly when it comes to spectral subtraction (M. Berouti R et al. 2002)[21]. The frequent 

misperception is that noise persists throughout a speech and that the first few frames are 'noise-only.' The 

spectral energy of these frames is averaged to obtain a noise estimate. 

Vizinho(1999) [71], Josifovski [35], and Cooke et al.(2001) [25] employ similar estimations. Because 

of the nonstationarity of noise, such approaches frequently produce incorrect IBM estimates. To estimate noise 

in nonstationary settings, more complicated algorithms have been proposed. VAD-based methods (A. Korthauer 

et al. 1999)[72], For instance, Hirsch's histogram-based approaches and recursive algorithms for noise 

estimation. 

Seltzer et al. 2004 [50] approximated the noise similar to Hirsch's approach available in each sub-band, 

which is then used to estimate masks. Any noise-estimation approach can be effortlessly comprehensive to 

approximate the SNR at each T-F unit by deriving an approximation from the clean speech power spectrum (M. 

Berouti et al. and S. Boll et al.1979) [21][23].  By subtracting noise power from noisy spectrum the speech 

power can be easily calculated. [21][23]. The speech power is determined by subtracting the noise power from 

the measured noise spectral power. An additional feature is the creation of a spectral floor, below which all 

estimates are automatically rounded up. There are also a variety of direct SNR estimating methods that have 

been documented. 

Nemer et al. 1999[44] state that the local SNR can be estimated using higher-order speech and noise 

statistics, which assume a sinusoidal model for band-limit speech and a Gaussian model for noise. Tchorz and 

Kollmeier [55] proposed a supervised technique for SNR estimation. They used psychoacoustic characteristics 

and a multilayer perception (MLP)-based classifier to figure out the SNR at each T-F unit. 
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Loizou 2005[73] provides extensive analyses on these topics for interested readers. If the SNR is 

approximated using a noise estimate and the LC is set to an appropriate value, the IBM can be calculated using 

Equation (16.1). Although 0 dB is the most obvious choice, different values have been utilized [25, 49]. Local 

SNR estimates can be converted to soft (ratio) masks using a sigmoid function, which converts them to a real 

value in the range [0, 1], allowing them to be understood as probability estimates for further processing. A 

posteriori SNR, which is defined as the ratio of noisy signal power to noise power expressed in dB (P. Renevey 

et al. 2001)[48], can also be used to build masks. This eliminates the requirement to calculate the clean speaking 

power and SNR in the surrounding area. Any a posteriori SNR criterion can be expressed in the same manner as 

a local SNR criterion. 

According to Raj and Stern 2005[46], combining an SNR requirement with a negative energy criterion 

often leads to higher-quality masks. In practice, noise-estimation algorithms perform well in stationary contexts 

but poorly in nonstationary ones. Despite this, SNR-based techniques are still popular due to their ease of use. 

 

Speech Enhancement Algorithms 

Voice enhancement techniques are intended to reduce noise and reverberation in the input speech 

stream. Automatic speech recognition, for example, uses this front-end approach in both single-channel and 

multichannel speech-related domains. Spectral subtraction, 

Xu et al. 2014, Zhao et al. 2017, Jin et al. 2009)[75,76,77] discussed Wiener filtering, and Minimum 

Mean Square Error (MMSE) estimation have all been pursued monaural speech augmentation (Most crucially, 

these strategies entail the difficult task of estimating noise power in non-stationary sounds. When it comes to 

voice augmentation, the accuracy of noise estimates for stationary noises is higher than for non-stationary 

noises. Spectral subtraction, on the other hand, produces good results for non-stationary noises, although it can 

sometimes produce negative values over the projected speech spectrum. It's interesting to note that model-based 

strategies are aimed at improving the performance of voice enhancement algorithms in non-stationary noisy 

situations. Improved speech enhancement methods are based on models like the Hidden Markov model (HMM), 

Independent Component Analysis (ICA), and Non-negative Matrix Factorization (NMF)(Weninger et al. 2015, 

Jaureguiberry et al. 2016)[78,79]. LSTM layers are also used in recent speech-enhancement techniques, which 

use deep learning models with Long Short Term Memory (LSTM) layers. 

Kolboek et al. 2016, Weninger et al. (2014)[80,81] introduced speech enhancement with deep LSTM-

RNN architecture and successfully integrated it with a speech segregation system to achieve better evaluation 

measures. Beamforming techniques, BSS-based methods, and neural network-assisted algorithms are more 

advanced options for multi-channel speech enhancement. Through a process known as beamforming techniques, 

the enhanced form of the predicted target signal is created by merging several signals that are emitted from 

diverse spatial locations of an environment. When it comes to speech applications, the three most common 

beamforming algorithms are delay and sum, minimum variation distortionless response (MVDR) beamformer, 

and multi-channel Wiener filter (MCWF) (Higuchi et al. 2016, Cauchi et al. 2015)[82,83]. They rely on the 

computation of the target steering vectors/ spatial covariance matrices as well as the noise spatial covariance 

matrix in order to function correctly. 

Zhang et al. (2017)[84] used deep neural networks and beamforming techniques to create a binaural 

speech segregation system. Furthermore, a combined method of speech augmentation and speech segregation 

demonstrates the ability to deal with complicated difficulties in a multisource reverberant setting. 

 

Distance Estimation based on Sound Source 

In early 1972, researchers focused their efforts on developing and implementing algorithms for a range 

of processors, including the Generalized Cross Correlation (GCC), phase transform (PHAT), and Smoothed 

Coherence Transform (SCOT) (Benesty et al. 2008, Brown et al. 1994)[85,86]. 

Based on the direct-to-to reverberant ratio, Lu et al. (2010)[98] came up with a good way to figure out 

where the energy comes from. The author used a reverberation time-dependent binaural equalization 

cancellation method to show a new way to figure out the direct-to-reverberant ratio for distances greater than 2 

m. 

DiBiase et al. 2001, Chen et al. 2005, and Frost et al. 1972) [87, 88, and 89] developed models of 

sound source identification and microphone array signal processing applications using these methodologies. Full 

source localization, which is computer-assisted, can be used to identify the azimuth angle and distance between 

the user and a desired target sound source in a noisy and reverberant environment. 

Lu et al. 2011, Nguyen et al. 2016 [90,91]. Distance tracking is crucial for a range of acoustic 

applications, such as intelligent hearing aids, speaker recognition systems, auditory scene analyzers, and audio 

surveillance systems. The microphone-assisted speaker distance detection system employs pattern recognition 

and feature extraction approaches (Georganti et al. 2013, Spille et al. 2011, Bishop 2006) [92,93,94]. 
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Georganti et al. 2011, Hioka et al. 2011, Vesa et al. 2009 [95,96,97] tells that it has been found that a 

number of studies have looked into the effects of room reverberation and volume on distance perception models 

as well as directivity and outside noise. However, the computational methods for determining the source 

distance are simpler than those for determining the azimuth localization. Historically, researchers have estimated 

the distance of a sound source using parameters such as the Interaural Cross-Correlation (ICC) value, pitch 

coherence, the Direct to Reverberant Ratio (DRR), and energy sequence related to transients (e.g., the center of 

mass). 

Hioka et al. (2011)[96] in his paper explains the method for sound localization. The Direct to 

Reverberant Ratio was used to develop a spatial correlation matrix model for determining the distance between 

a sound source and a listener (DRR). When microphone arrays are necessary, this notion has been implemented 

successfully. The magnitude squared coherence of binaural channels was proposed by Vesa et al. (2009) [107] 

as a distance perception model. Gaussian maximum-likelihood classification is taught well using the properties 

learned from these audio channels. 

A new study (Georganti et al., 2013)[99] describes an enhanced machine learning-based approach for 

estimating the distance between two voice sources that are based on the statistical characteristics of the voice 

source's distance. Additionally, distance estimation models for single- and dual-channel microphone recordings 

have been successfully constructed using distance-dependent statistical characteristics (Georganti et al. 2011 and 

2013)[95,99]. 

 

Monaural System 

When a spoken signal reaches natural auditory systems, it is frequently accompanied by additional 

sound sources. However, listeners can hold conversations in a variety of situations. The "cocktail party" effect 

(E. C. Cherry 1953) [9] is a well-known example of this phenomenon. For computers, it makes sense to allow 

them to distinguish between the object source and other sources of interference in the same manner as humans 

do. Automated speech recognition (ASR), speaker identification, audio retrieval, and digital content 

management are just few of the numerous uses for an effective separation system. As a result, researchers are 

becoming increasingly interested in voice separation and signal processing in general. 

Blind source separation (A. K. Barros et al. 2002)[113] and spatial filtering (H. Krim et al. 1996)[114] 

are two examples of broad methods for speech separation. These methods necessitate the use of many sensors. 

However, there is only one sensor in many applications, including telephony and audio recovery; therefore, a 

monaural solution is expected. Because only one sensor signal might be employed in monaural separation 

scenarios, it is significantly more difficult and yet an open subject for researchers to investigate. Despite the fact 

that monaural speech separation remains a difficult task, the human auditory system possesses an extraordinary 

capacity for it, compelling researchers to continue their investigations into human auditory perception. 

In 1990, A. S. Bregman et al. introduced the notion of auditory scene analysis (ASA) for the first time 

(A. S. Bregman et al. 1990)[24]. According to him, the auditory system may divide acoustic data into streams 

corresponding to distinct sources using ASA principles. His ASA research suggests a novel approach to the 

problem of monaural speech separation. As a result, computational auditory scene analysis has generated 

considerable interest (CASA). 

G. J. Brown et al. and various others in [116] discuss for speech separation, numerous CASA systems 

based on ASA principles have been proposed. It is possible to achieve speech segregation in these systems 

without making any significant assumptions about the interference's acoustic qualities. There are two 

fundamental phases in CASA systems: segmentation and grouping (synthesis)[24]. Each sensory segment of 

audio input should originate from a single source, according to segmentation. Segments that are likely to 

originate from the same source are grouped together during the grouping stage. CASA research began with an 

examination of the simplest data-driven technique. Input data such as pitch, onset, offset, AM rate, and so on 

can be used to derive information about the target speech from this type of CASA system. CASA research has 

changed from a data-driven to a knowledge-based schema-driven approach over the last decade. 

To aid with separation, an increasing amount of higher-level knowledge is being integrated into 

primitive CASA systems (D. P. W. Ellis et al. 1996, N. Roman et al. 2003, D. Godsmark et al. 1999) 

[117][119][120]. While recent huge developments in knowledge-based CASA research have resulted in the 

integration of numerous new forms of knowledge into CASA systems, knowledge about voice perceptual 

quality has not been paired with them. While most CASA systems are designed to operate in a noisy 

environment, the signal-to-noise ratio (SNR) is used to assess their overall performance. While the CASA 

technique improves the SNR of speech following separation and reduces noise, this does not necessarily imply 

that speech quality is improved in perception. However, it is sometimes assumed that the higher the signal's 

SNR, the higher the perceived quality of the signal; this is not necessarily the case. Using perceptual quality 

evaluation systems in conjunction with CASA systems, researchers have developed an approach that enhances 
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both SNR and perceptual quality of speech separation. While most CASA systems are evaluated based on their 

signal-to-noise ratio (SNR), the signal-to-noise ratio (SNR) is used to evaluate their overall performance. 

Subjective assessment approaches employ listener panels to rate speech quality on a scale of one to 

five, with one indicating poor speech quality and five indicating great speech quality. The mean opinion score 

(MOS) is calculated as the average of the listeners' ratings. Although it is the most dependable procedure, it is 

also the most time and money-consuming, making it unsuitable for frequent or urgent applications. On the other 

hand, objective measurement approaches that obviate the need for a listener panel in favor of a computing 

algorithm can overcome these shortcomings. Nonintrusive and intrusive quality evaluation methodologies have 

been created with the goal of accurately representing subjective ratings of voice signal quality. Invasive 

measurements, which use some type of distance metric between clean and degraded speech sounds to do so, 

predict the subjective MOS. Because nonintrusive evaluation is based solely on the test voice signal, estimating 

objective speech quality is more difficult. While nonintrusive models have been presented in [121], the ITU's 

objective quality measurement standard method P.563 for nonintrusive was just recently issued. 

Hu and Wang's model (2004) [118] Suggested that because speech separation applications lack 

reference speech signals, an intrusive methodology may be ineffective; thus, the nonintrusive method is advised. 

As a result, we choose to analyze speech quality using the P.563 technique. After determining the objective 

quality assessment method, the only remaining task is to establish how to integrate it with a segregation 

mechanism. They established a link between speech quality and CASA processing based on the features of the 

fundamental CASA system, specifically With regards to the CASA segmentation results; they applied speech 

quality evaluation to identify higher-quality segments with fewer interference sources and monitor them using 

the pitch contour as a separation cue. Finally, we may apply speech quality analysis to determine which 

segments were excluded from the foreground stream. We can then revisit the initial classification and rearrange 

the segments to improve the final grouping performance. 

Peng Li et al. 2006[8] explains that, in speech and signal processing, monaural speech separation is a 

difficult problem. Figure 2.3 shows how a monaural speech separation system operates. A single microphone 

was used to record the sound from sources A and B. A sound or voice separation system can distinguish 

between A and B sound sources. 

 

 
Figure 6.1 Monaural Speech separation system 

 

The cocktail party problem, alternatively referred to as speech segregation, is the difficulty of 

differentiating object speech from ambient or background noise (Yang Shao et al. 2008, Ming Tu et al. 2014) [7] 

[2]. Monaural speech segregation involves making monaural recordings using only one microphone and 

attempting to separate speech and sound. To create a process similar to the human auditory system, recoding 

using just one microphone may be adequate. Robust speaker and speech identification, audio information 

retrieval, and hearing aid design are merely some of the real-world uses for this technology [8]. Signal 

processing, despite decades of work, still has trouble distinguishing monophonic speech. A variety of strategies 

have been used to overcome the problem of monaural speech segregation. 

Peng Li, Yong Guan, Bo Xu, and Wenju Liu's[7], 2006 Computational Auditory Scene Analysis 

(CASA) and Objective Quality Assessment explored the use of spectral subtraction and Weiner filtering as 

examples of approaches in their paper "Monaural Speech Separation Based on Computational Auditory Scene 

Analysis." His presentation focused on computational audio scene analysis (CASA) and objective speech quality 

evaluation (OSQE) (OQAS).It was proposed here that CASA be used in conjunction with a new method of 

evaluating the quality of a person's voice (OQAS). With a higher SNR and an average opinion score, the 

accuracy of speech separation can be improved (MOS). The Hu and Wang model serves as the foundation for 

the CASA system in the suggested concept (Yuxuan Wang et al. 2013)[4]. For the purpose of distinguishing 

between resolved and unresolved harmonics, this model is a simple CASA that relies on temporal continuity and 

cross-channel correlation. Segments are generated and organized using this method based on the regularity of 

those segments. In addition, a technique known as unresolved harmonics segregation is used to maintain 

temporal continuity. 
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As a result, while dealing with spoken discussions, the Hu and Wang model performs nearly as well as 

many other knowledge-based CASA systems (Yuxuan Wang et al., 2013) [4]. Hu and Wang's model was chosen 

by the author because it uses the concept of a time-frequency mask, also known as an Ideal Binary Mask (IBM). 

The audio masking phenomenon inside a crucial band supports the concept of binary masking. In the case of a 

specific frequency band, a weaker signal is hidden by a stronger one. For human voice intelligibility, the optimal 

binary mask is particularly successful. It has a great user interface for automatic voice recognition (ASR). 

Additionally, it simplifies the process of utilizing the CASA system in conjunction with the OQAS algorithm. 

The author has proved that the proposed strategy enhances the SNRs and the majority of perceptual properties of 

the split talks significantly. When compared to existing separation or enhancement systems, it was discovered 

that the proposed method was more effective at processing the monaural speech separation problem than the 

alternatives in the study. 

Yuxuan Wang et al. (2013) [4]. They initially compute a coarse pitch contour utilizing speech split by a 

dominant pitch to get a precise pitch contour. After that, it's tweaked to fit within psychoacoustic restrictions. 

Ming Tu et al. (2014) [2] has discussed another use of CASA is voice activity detection (VAD), which is 

extensively used in ASR, mobile communications for managing discontinuous transmission systems, and a 

variety of noise tracking techniques for speech augmentation. The accuracy requirements for VAD systems are 

increasing as the number of voice applications in the real world increases. However, background noise, 

particularly non-stationary noise, remains an issue for VAD. 

The author Ming Tu et al. 2014 [2] explains that feature extraction and decision-making are described 

as the two fundamental components of a typical VAD system. VAD systems frequently use time-domain 

characteristics such as energy and zero-crossing rate, as well as spectral-domain characteristics such as spectral 

difference and DFT coefficients, cepstral-domain characteristics such as Mel-frequency cepstral coefficients 

(MFCC), and harmonicity-based characteristics such as harmonic structure-based VAD characteristics and DFT 

harmony. Statistical model-based methods and machine learning-based methods are utilized in decision-making. 

Computational auditory scene analysis was used to uncover two new VAD features, which the researchers 

studied in-depth (CASA). There are two basic approaches: one uses the Gaussian Mixture Model, and the other 

relies on the Variance Analysis of Differences (VAD). Instead of DFT coefficients, GFCC coefficients are 

extracted from the cochleagramme in the proposed approach, and these features are used to distinguish speech 

from noise in noisy signals. The GFCC of speech and noise is likewise modeled using the Gaussian mixture 

model. The proposed approaches' performance is compared to that of many known algorithms. In the job of 

VAD, the results showed that CASA-based features outperformed various traditional features. The results were 

assessed using the TIMIT database, and it was determined that GFCC extraction is superior to MFCC 

extraction. Prior literature has focused on the contrast between spoken and unvoiced speech. Despite the fact 

that computational auditory scene analysis has been extensively used to recover spoken speech from monoaural 

mixtures, unvoiced speech separation has gotten relatively little attention. Unvoiced communication is more 

receptive to influence than voiced communication because of the low intensity and lack of harmonic structure. 

[13]. 

Ke Hu 2011[13] explained that using a new method proposed in this, unvoiced speech may be 

separated from non-voiced speech interference begin, the cross-channel correlation approach proposed here 

reduces false speech and periodic noise, both of which are undesirable. It is possible to estimate the noise energy 

of unvoiced intervals by comparing it to the noise energy of neighbouring voiced intervals. To decode silent 

communication, we must first segment it and then categorize it, as described in the previous section. To create 

time-frequency segments, unvoiced intervals were segmented using spectral subtraction, which was then used to 

construct the segments. Using basic thresholding and Bayesian classifiers, unvoiced speech segments are 

categorized according to the frequency of their unvoiced speech attributes. After rigorous research and 

comparison, it was discovered that the proposed technique is computationally efficient and considerably 

enhances the performance of unvoiced speech segregation in unidirectional speech. The article provides an 

unvoiced speech segmentation algorithm based on a disparately voiced speech that can be applied to a variety of 

situations. The dormant T-F units of the estimated voiced binary mask were used to estimate noise energy and 

subtract it from the mixture, resulting in unvoiced segments spaced at regular intervals between voiced 

segments. Periodic signals will be turned off at that point in time. While the speaker was not speaking, 

background noise was being analyzed and deleted from the recording system. Calculate an unvoiced interval by 

averaging the mixing energy of two adjacent voiced intervals with inactive T-F units and dividing the result by 

the number of active T-F units. T-F analysis can be performed with a 64-channel gammatone filter bank. 64-

channel filter banks, rather than a 128-channel filter bank, save computation time by a factor of more than two 

when compared to the former. 
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Binaural Systems 

Sayers and Cherry's (1995)[126] model was one of the first binaural hearing models, as it connected the 

lateralization of binaural signals to their interaural cross-correlation. Grouping sources according to their shared 

source location is a frequently used technique in binaural speech processing for isolating target sounds in 

difficult conditions. The phrases ITD and IID are frequently used interchangeably to refer to the time 

discrepancies between two ears (IID). ITD occurs when sound reaches each ear with an unequal delay due to 

differences in the length of the path between the sound source and the two ears. (Normally, binaural recordings 

need the use of an artificial head in order to capture substantial IID indications.) 

Two microphone recordings are used to differentiate between the target and background sounds, 

allowing you to hear them more clearly. This is accomplished with two microphone recordings in binaural 

CASA systems. In most binaural systems, the differences in the signals each ear receives are used to figure out 

where things are, like azimuth (or microphones). The ITD (interaural tone difference) and IID (interaural tone 

difference) are the two most important indicators in this regard (IID). ITD is the difference in the time it takes 

for signals to reach each ear. When ITD happens at a frequency greater than 1.5 kHz, the wavelengths are so 

small that it is hard to figure out how far apart our ears are. The difference in decibel levels between the two ears 

is caused by the "shadow" effect that the human head has on it. Because ITD makes low-frequency sound 

components that surround the listener's head sound different, IID doesn't make them sound different (less than 

500 Hz). 

Durlarch's equalization-cancellation (EC) model and Jeffress' cross-correlation-based ITD estimate 

approach both had a significant impact on binaural segregation [27]. There are two stages in trying to 

distinguish the goal in the EC model. The first step is to equalize the noise levels in the signals originating from 

both ears. During the cancellation stage, the signals from the two ears are deleted. A cleaner objective is 

achieved by canceling out the noise that was equalized in the previous stage. Because it is based on the 

similarity of the two ear signals, the Jeffress model is the most widely used in clinical practise. The inter-trial 

delay is the amount of time it takes for two patterns of neural activity in both ears to acquire maximum 

correlation before they become indistinguishable (ITD). 

To compute ITD, a normalized cross correlation function, C(t,f,τ) 

𝐶(𝑡, 𝑓, 𝜏) =
∑ 𝑥𝐿(𝑡𝑇𝑡−𝑛𝑇𝑛,𝑓)𝑥𝑅(𝑡𝑇𝑡−𝑛𝑇𝑛−𝜏𝑇𝑛,𝑓)𝑛

√∑ 𝑥𝐿
2(𝑡−𝑇𝑡−𝑛𝑇,𝑓)𝑛 √∑ 𝑥𝑅

2 (𝑡𝑇𝑡−𝑛𝑇𝑛−𝜏𝑇𝑛,𝑓)𝑛

- 

------------2.2 

For a time lag of, the preceding equation calculates cross-correlation at frequency channel f and time 

frame t. Left and right ear responses are denoted by xL and xR, respectively. As with the normalised 

autocorrelation function, the cross-correlation function peaks at the ITD delay. 

IID is calculated as the ratio of the mean power of the signals received by each ear: 

∑ 𝑥𝐿
2

𝑛 (𝑡𝑇𝑡 − 𝑛𝑇𝑛, 𝑓)

∑ 𝑥𝑅
2

𝑛 (𝑡𝑇𝑡 − 𝑛𝑇𝑛, 𝑓)

10
𝐼𝐼𝐷(𝑡, 𝑓) = 10𝑙𝑜𝑔

 

--------------2.3 

Roman et al.2003 [49] suggested. This is most likely the first classification-based speech segregation 

system that has ever been implemented. As the first classification-based speech segregation system, IBM 

estimates based on classifying ITD and IID estimations. Once a target and interference configuration is 

determined, they found that the intensities of target and mixture have a smooth and predictable effect on ITD 

and IID values (The azimuths of the target and the interference are referred to as configuration in this context.). 

As a result, they were able to use the ITD-IID space to determine the frequency channel-specific distributions of 

target dominant units and interference dominant units. They use a kernel density estimator to represent the 

distributions in their system. Based on the observed ITD and IID values and the likelihood that the unit is target 

dominant or interference dominant, binary judgments are formed at each T-F unit. All three of these metrics 

have improved when compared to IBM's binary masks. The implementation of ITD-IID distributions is 

complicated by the fact that they are configuration-dependent. 

Palomaki et al.(2003) [45]  presented an alternative strategy. TThe azimuths of the target and 

interference are estimated initially in this technique. The cross-correlation function values at the target and 

interference azimuths are then compared to determine whether a T-F unit is dominantly target or interference. 

The precedence effect is replicated by low-pass filtering the envelope response of each channel in their system 

(R.Y. Litovsky et al.1999) [40]. Conserving instantaneous and suppressing sustained responses, lowers the 

effect of late echoes in reverberant environments. Palomaki et al. used the above approach to estimate binary 

masks and obtained good ASR performance in reverberant circumstances. 

In 2005, (H Steven et al., 2005; Richard M et al., 1995)[127],[128] provide theories that explain how 

these cues are employed to lateralize sound sources, among other things. The term "straightness" refers to the 
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process of weighting ITD contributions to ensure consistency across a variety of frequencies. This was made 

possible by the fact that authentic sound was produced by point sources that maintained constant ITDs across a 

broad frequency range. A simple and expedient way for identifying a suitable frequency is to seek for an 

"unwavering" maximum of the interaural cross-correlation function throughout a certain frequency range. In 

order to locate spectro-temporal elements that have not been altered by distortion sources like as noise, 

competing talkers, or reverberation effects, a spectrum-like display has been developed. These approaches have 

the potential to be effective if the undistorted components are accurately discovered. Using interaural 

correlation, commonly known as ITD, it has been found that binary or continuous masks may be generated that 

indicate if a signal's regions are comparable to the source signal's sections. 

Similarly, Harding et al. (2006 [30]) provided an approach that assumes the azimuth of the target is 

already known. The combined distributions of ITD and IID in dominating T-F units can be easily determined 

using a histogram-based approach. Probabilities for target dominance based on ITD and IID observations are 

calculated using these distributions. When utilized with a ratio mask, the calculated reverberation probabilities 

can significantly enhance ASR outputs in reverberant situations. 

Woodruff and Wang (2010) [60] recently presented a technique for estimating the IBM that utilizes 

monaural and binaural signals. Using a monaural CASA approach, they first get simultaneous streams, each of 

which occupies a continuous time interval. The tandem algorithm, which was previously explained, is used in 

this process. It is then possible to estimate both the azimuths of the streams and their sequentially grouped 

concurrent streams using binaural cues. 

Chanwoo Kim and his colleagues(2009)[129] used a method called interaural phase difference to figure 

out binary masks in the frequency domain. This method has made a big difference in how well people can 

recognize things. Precedence effect: When directional signals from the first wavefront (the direct sound) are 

given more weight than those from the next wavefronts (the reflected sounds), this is called the "precedence 

effect."[130]. Many studies show that the precedence effect helps people understand speech and keep track of 

where they are in reverberant places. The precedence effect is a phenomenon that reduces monaural (Keith D 

Martin 1997)[131] and binaural (W. Lindemann 1956)[132] echoes. It is possible to raise the onsets or first 

wavefronts to reduce the effects of reverberation. This can also be performed by suppressing the steady-state 

components of a signal. The Suppression of Slowly Variable Components and the Falling Edge of the Power 

Envelope (SSF) algorithm was built using this technique (Chanwoo Kim et al. 2010)[124][133], which 

significantly improved speech recognition accuracy in reverberant conditions. Numerous additional precedence-

based processing algorithms have also demonstrated promising results (e.g., [130,[69]). 

Michael L Seltzer et al. 2013, Xue Feng et al. 2014 and Hu et al. [122][123][174]Recent years have 

seen remarkable advancements in speech recognition systems, owing in large part to the discovery and 

widespread use of machine learning techniques . On the other hand, noise resistance continues to be a worry. 

Piñero et al. 2017,[15]and Almaadeed et al. 2018,[115] added further that voice-based user interfaces 

for smartphones, smart home devices, cars, and other devices are becoming more common, which makes it 

important for them to be durable. Improved speech recognition accuracy is still a problem when there aren't any 

stationary noise sources and other bad things, like reverberation. If you've ever been to a "cocktail party 

conundrum," you can see how well humans do when there are a lot of different people talking at the same time. 

Even in the most hostile places, human hearing is very strong. When you understand why our sense of hearing is 

so strong, you can use auditory processing principles to improve your ability to recognize things in noisy or 

reverberant situations. 

 

Binaural Processing 

Lu, YC (2011) (90) discusses Binaural processing is investigated in a variety of difficult conditions, 

together with reverberation and interfering talkers. The recording technique, as detailed in the instructions, 

necessitates the use of two microphones, as seen in Figure 2.4. The recording is done in a reverberant 

environment, with the two microphones set right in front of the speaker. There is an interfering talker in addition 

to the two microphones, which is positioned at an angle to the two microphones. 

Many of the strategies addressed in this study are based on a knowledge of how humans process audio 

in both the monaural and binaural senses. 
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Figure 8.1 2-microphone recording using a target source and an interfering source 

 

Following Figure 2.5 depicts a simplified block diagram of the algorithm discussed in this study. 

Below are explanations for each of the blocks. 

 

 
Figure 8.2: Block diagram describing overall algorithm 

 

Steady-state suppression 

In the presence of reverberation, steady-state suppression has been found to increase automatic speech 

recognition accuracy dramatically (ASR). The human auditory system has features like the precedence effect 

and modulation frequency that led to the use of steady-state suppression in audio processing. The goal of this 

type of processing is to make more of the input signal sound like direct sound and less like reflected sound. 

Chanwoo Kim and Richard et al. (2010) [124,133] explain that this study used the steady-state 

suppression (SSF) method. Forty gamma frequency channels were originally included in the SSF method. In 

order to determine the frame-level power of these channels, a low-pass filter is used to analyze and filter the 

signal. The processed power can be obtained by subtracting the original power contour from a lowpass-filtered 

representation of the short-term power. The weighting coefficient is calculated by dividing processed power by 

input. The spectrum weighting factors are then calculated using these weights. Multiplying each spectral 

weighting factor by the original input signal's spectral spectrum creates the processed signal. This inhibits the 

power contour's dropping edge, which is particularly useful in reverberant situations for improving ASR 

performance. We present findings with and without SSF processing in this study. On each microphone channel, 

steady-state suppression is conducted separately. According to (Richard M Stern et al. 2016) [125], the 

application of steady-state suppression monaurally is more successful. 

 

Cross-Correlation and across Frequency 

Designers offer Cross-Correlation across Frequency (CCF) as a new technique in this study to 

emphasise input items with consistent frequency distributions. CCF is motivated by the concept of 

"straightness" weighting, as stated by (R. M. Stern et al. 1998) [151]. This method is intended to smooth a 

narrow band of frequencies while simultaneously enhancing regions of frequency coherence. CCF processing is 

depicted in a block diagram in Figure 2.6. 
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Figure 8.3: CCF algorithm block diagram 

 

This technique closely resembles how the human auditory system processes speech. Bandpass filters 

are used to simulate the peripheral hearing of the auditory system.[134] The gammatone filters in Slaney's 

Auditory Toolbox [134] have been modified for our requirements. To compensate for the bandwidth loss caused 

by squaring the frequency response during the autocorrelation operation, the original gammatone filters' 

autocorrelation function is computed and adjusted. The ERB scale (Brian CJ 1996) was used to space the filters' 

center frequencies [135]. Each of these filters is augmented by a satellite filter set. CCF may be conducted over 

a large frequency range with these satellite filters. Rather than that, N sets of bandpass filters are developed, 

each of which contains a "central" band and m=2 satellite bands on either side. m is always equal to the number 

of core bands when expressing the total number of satellite bands. 

In Figure 2.6, the N filter groups are denoted as "Filter Group 1," "Filter Group 2," and "Filter Group 

N." Each of these filter groups consists of a single central band and its associated satellite bands. Each satellite 

filter in the lth pair has a center frequency determined by the filter group's center band. 

𝐶𝐵 ± 𝑠 +∝
𝑚
2

+1−𝑙
 

----2.4 

CB is an abbreviation for the centre band frequency of a given filter group, and s is a parameter that 

affects the distance between satellite filters as well as the frequency dispersion on each side of the distance 

between satellite filters. Compared to when they were at 100 percent, the satellite filters were closer together 

closer to the centre band and more widely separated further afield when they were at zero. This parameter was 

determined to be 2500 Hz with N equal to 20 and m equal to 6. The span parameter was determined to be 6 Hz. 

The filter outputs for a certain filter group are generated based on the input signal x[n]. 

   𝑥𝑘𝑝[𝑛]=𝑥[𝑛] ∗ ℎ𝑘𝑝[𝑛] 

-------2.5 

Where xkp[n] is the kth band of the pth filter group's filter output, and x[n] is the input. Here, k is a 

number between 1 and m+1 (m satellite bands plus 1 centre band), while p is a number between 1 and N. A 

rough model of auditory nerve processing is then applied, which incorporates half-wave rectification of the filter 

outputs. The filter outputs are negated and half-wave rectified, similar to our earlier work in "polyaural" 

processing with several microphones (Richard M Stern et al. 2007)[136]. While this part of the processing isn't 

physiological, it allows for the reconstruction of the full signal, including positive and negative sections. The 

frequency cross-correlation is then calculated. 

 

Speaker Recognition 

Speaker recognition (Zhao et al. 2014, Anguera Miro et al. 2012)[100,101] is the task of recognizing 

people based on their voice information. The performance of a speaker recognition system is influenced by the 

combined effects of two factors: noise and reverberation. When noisy test utterances and clean trained 

utterances are utilized, the performance is lowered. Speech enhancement algorithms, such as spectral 

subtraction, are incorporated before speaker verification and speaker identification models in a robust speaker 

recognition system. Few researchers have developed a classifier, such as HMM, that employs speech and sounds 

separately during training (Dehak et al. 2010 & 2011, Rao et al. 2014)[102,103,104]. The improved final 

selection is made based on the greatest likelihood at the time of testing. The following algorithms, such as 24 i-

vector extraction with PLDA, wiener filtering, and vocal activity detection, are used in state-of-the-art SV 

systems (Rao et al. 2014, Kanagasundaram et al. 2014 & 2011)[104,105,106]. Some studies have looked at the 

performance of monaural features such MFCC, GFCC, and amplitude modulation spectrogram under noisy 

situations to improve speaker recognition resilience (Ming et al. 2007, Zhao et al., 2013; Lei et al. 

2012)[107,109,108]. Zhao et al.[109] studied the impact of a noisy reverberant environment on speaker 
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recognition and performed mask estimation using a deep neural network-based classifier prior to speaker 

identification. Kanagasundaram et al. [106] proposed many channel compensation approaches to improve the 

speaker recognition system when the utterance is short. Voice-aided systems, like other biometric modalities, 

are vulnerable to malicious spoofing attacks, including Automatic Speaker Verification (ASV) systems. Many 

additional researches have recently concentrated on building classifier fusion-based algorithms to combat 

spoofing attacks in biometric recognizers (Hanilçi et al., 2018, Sahidullah et al. 2015, Wu et al., 2016)[111, 

112,110]. 

 

Integrating CASA with ASR 

B. Raj et al. (2004)[47] demonstrated the limitations of missing-data ASR when dealing with 

challenges involving a big vocabulary. They were able to overcome some of the disadvantages associated with 

using CASA as a preprocessor by using a ratio mask rather than a binary mask and precise mask estimates. 

The CASA approaches mentioned in the preceding sections give perceptually inspired strategies for 

distinguishing the aim from the mixture. Estimating the optimum binary mask has been the main focus. Despite 

the fact that IBM-based techniques yield good segregation outcomes, merging CASA and ASR has not been as 

simple as it appears. Using CASA as a preprocessor is a straightforward approach to combine CASA and ASR. 

The segregated target speech can then be recognized using ASR models that have been trained in clean 

conditions. This could be a problem. Although the IBM is employed, the resynthesised signal will almost 

certainly have artefacts that will make identification difficult to achieve. If IBM makes mistakes, this will have a 

big impact on the performance of these systems. CASA, on the other hand, has been used as a preprocessor in 

some systems, and it has worked well. Srinivasan et al. [54] proposed one such model. This technique reduces 

the level of a loud voice by employing a ratio T-F mask. A system called HMM-

based ASR, which is trained with Melfrequency cepstral coefficients, recognises the enhanced speech.This 

system is used to recognise the speech (MFCC). They use Roman et al. [49] to figure out how big the mask is. 

According to Srinivasan et al.(2010) [7], when the vocabulary size of the recognition job rises, adopting a 

CASA-based preprocessing strategy may be more advantageous than using missing-data ASR (M. P. Cooke et 

al. 2001). Hartmann and Fosler-Lussier (2011) [31] made comparisons between ASR systems that use binary 

masks and those that use information from unmasked T-F units in their recent study on ASR performance and 

noise reduction. 

B. Raj et al. (2004) [47] developed feature reconstruction approaches that increased the noise-

resistance of ASR. The recognition process is carried out using an ASR system that is based on HMMs and has 

been trained in clean environments. In terms of ASR accuracy, reconstructed speech is shown to be much less 

accurate than IBM-processed speech, although by a few percentage points. Randomly flipping 1s and 0s in the 

IBM enhances reconstruction only when the number of mask flaws exceeds a predefined threshold. The binary 

construction of a mask, according to current theory, is anticipated to contaminate the cepstral coefficients (they 

used PLP cepstral coefficients to build their ASR system). This thing demonstrates the importance of further 

research into the impact of binary masks on ASR performance. To make use of ASR models trained in clean 

environments, the methodologies outlined previously modify the characteristics. A way to do this is called 

"feature compensation" or "source-driven." There are ways to compensate for missing features, like those that 

use CASA-based algorithms to identify the target [31, 54] and reproduce faulty features. J. Barker et al. 2005, L. 

Deng et al. 2005, S. Srinivasan et al. 2010[74][56][53] explained that combining CASA and ASR (Another 

possibility is to change ASR models in such a way that they automatically manage missing or corrupted speech 

features. These methods are referred to as model compensation or approach to classifier compensation. ASR 

algorithms for missing data are one type of model compensating mechanism. Additionally, strategies for 

integrating feature and model correction are available. The approaches developed by Narayanan and Wang 

(2010)[42] and Karadogan et al. (1958) [36] simplified the process of merging CASA with ASR. They execute 

ASR on IBMs using a binary pattern classifier. Binary pattern recognition is a significant departure for ASR 

from established techniques that rely on MFCCs and other fine-grained characteristics of speech. This 

experiment was inspired by the IBM voice perception study, which established that humans could interpret 

speech produced by modifying noise. Because noise alone lacks speech information, IBM's binary pattern must 

be exploited to achieve intelligibility. As a result, the pattern's phonetic information is crucial. 

Narayanan and Wang [42] defined it as a system capable of recognizing isolated digits. Convolutional 

neural networks have proved successful in recognizing handwritten digits and objects (Y. Lecun et al., 1998 

[37], [68]). Even if the IBM is computed directly from loud speech using CASA, reasonable results are feasible. 

As Narayanan and Wang [43] demonstrate, IBMs and traditional speech features such as the MFC complement 

one another and can be utilized in conjunction to improve their system's overall classification performance. The 

combined technique can attain accuracy levels comparable to the majority of current phone categorization 

findings. Additionally, binary pattern features perform well on progressively difficult ASR tasks. In the future, 

reliable ASR may require characteristics inspired by CASA. The following part will examine an ASR 
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framework influenced by CASA in greater detail. To improve ASR performance, Srinivasan and Wang's [52] 

uncertainty transform model uses both feature and model adjustment. 

 

III. Conclusion: 
The point that the paper trying to make overview that understanding of ASA involves much more than 

the understanding of how auditory streams are formed by the alternation of high and low tones in the laboratory. 

Explanations of ASA – be they in terms of brain processes, computer systems, or the evolution of the nervous 

system – need to be tested against a wide range of facts about the perceptual organization of sound. And any 

claim that primitive ASA in non-humans corresponds to primitive ASA in humans also needs to be tested 

against a wide range of phenomena to see how far the correspondence holds up. Researchers are trying to find 

out the exact process underlying in the auditory system of human being and making the similar sense in 

machines. This will open new era for researchers and speech community 
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